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A B S T R A C T

With research on Virtual Reality technologies gaining traction and
focus on virtual agents situated in 3D environments, it is important
to know and understand what information the agents have access to
and how the information is provided to the agents when expected to
perform certain tasks. This dissertation thesis tries to understand how
possessing an active vision system or a passive vision system by an
agent affects the performance of the agent in a task that involves lo-
cating and moving towards a flower object and drinking nectar from
the flowers placed in the environment. This experiment tests four
agents with different perception systems, starting with an agent with
a passive perception system that gets symbolic information about the
location and position of the flowers and the distance to the nearest
flower and also uses a RayCase sensor to sense the environment, and
gradually reduce the number of observations that each agent is get-
ting form the environment with the fourth agent having active per-
ception depending only on a camera feed. The experiment is in part
a comparison of agents using symbolic information and non sym-
bolic information about the environment and trying to find out the
behavioural differences in agents when they have access to different
levels of information about the environment.

The experiment was planned such that the agents are completely
identical in the sense that they even have the same architecture of the
neural network, but with the different amount of data and graphical
requirements being used to derive inferences for completing the task
of drinking nectar form the flowers, after pre experiment runs, it was
hard to determine which hyperparameters are best for training all of
the agents. The final experiment was then run using different network
architectures and hyperparameters for the different agents.
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Part I

F O R M AT I O N O F T H E I D E A

In this part of this dissertation thesis, I explain the basic
concepts behind this experiment and define the problem
statement on both a higher level and a lower level. I then
go through the literature and previous research related to
this project along with the thought process that led up to
the formation and design of this experiment.





1
I N T R O D U C T I O N

1.1 inception

Recently Samsung Sam - A virtual human introduced as Samsung’s
new virtual agent- went viral on the internet. Although Sam may not
have been acknowledged by Samsung officially, Sam going viral does
show how interested people are in virtual humans they can interact
with. We also have other mainstream virtual agents like Apple’s Siri
and Amazon’s Alexa that can be designed into virtual humans.

GlobalData.com, in their September 2021 thematic report (Global-
Data, 2021) mention that though the market for Augmented Reality
was worth $7 billion in 2020, over the next 10 years it will increase at
a compounded annual growth rate of 36% reaching a total revenue
of $160 billion, of which around $45 billion will be in the consumer
market. This report also implies that although AR technology is still
dependent on smartphones for processing capabilities, it intends to
replace our smartphones and act as standalone devices in the next
decade or so. Once AR is mainstream, there will also be a lot of vir-
tual agents who live on our AR devices like the agents that live in our
devices now (Siri, Alexa etc.), the only difference being that to thrive
in a mixed reality world (Billinghurst and Kato, 1999), the agents will
need to have a visual form that humans can see and interact with.

The researchers at AI Group have been developing “Max” (Weit-
nauer et al., 2008), a virtual agent and studying the in-situ interac-
tions between Max and real humans in the virtual world of the Sec-
ond Life online virtual world. The article states a few prerequisites
that a virtual agent must have if it is to act in a virtual environment.
The prerequisites being a) the ability to perceive, b) the ability to act,
c) the ability to reason and d) the ability to have and display social
skills.

When reading a blog post about one of these agents, a question
I asked myself was how do these agents see? It was obvious that
they do not, they have perfect world knowledge or atleast access to
all knowledge about the environment they exist in, and do not need
to "see". But what about in dynamic situations, where these agents
have to co-exist with humans, or other non deterministic actors, in
these situations, it gets really hard to keep track of all the actors or
even have perfect world knowledge leading to the environment itself
having imperfect world knowledge and inability to predict what the

3



4 introduction

attributes of an actor in the environment are going to be next. What
if we give these virtual agents the ability to see, perceive visually
and observe the environment just like us humans have. The question
itself is justified in the larger scheme of Artificial Intelligence re-
search by another question that how can we expect to build truly
intelligent agents that try to imitate human cognition without even
providing them with one of our most prominent senses, "Vision"?

1.2 introduction

This dissertation thesis focuses on the perception of intelligent vir-
tual agents with emphasis on visual perception and how possessing
either passive vision or active vision change the ways in which the
agent performs certain tasks in a virtual environment. The idea being
that once the agents are put in a real world environment, like in an
Mixed Reality environment, the agents can only be supplied with a
limited number of observations in symbolic form and those too can
be localised, like the orientation and direction of the agent and very
few non-local observations like the nearest interactable object or meta-
data about other agents. Although this information is extremely im-
portant for agents to act independently in an environment, it is only
practically implementable in environments with a small number of
agents and a world that is limited in scope. For example, in Second
Life, as of mid June 2021, the average daily usage of the platform was
200,000 users (Voyager, 2021). If we were to put 200,000 Intelligent
Virtual Agents in a metaverse as large as Second Life, the amount of
data required as symbolic input for all the agents will be too large
to manage. Another thing to consider is that when put in mixed real-
ity environments, we do not always have access to 100% information
about the world, therefore depending completely on symbolic data
for agent behaviour might not be entirely possible leading to some
missing values or noise in the symbolic data leading to a noise in the
action and performance of the agents. This dissertation project tries
to find a way to significantly reduce the amount of symbolic data re-
quired by the agents for acting in the environment by equipping them
with a way to visually perceive the environment and collect relevant
data on their own without being fed any, or at most very limited in-
formation by the environment.

1.3 problem statement

When talking on a larger scale, agents that seem to exist and live
in virtual worlds or metaverses, if aiming to be truly "alive", should
have independent access to information about their environments in
order to perform the various tasks they are designed for without in-
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terference or having to depend on any other system designed to feed
information to the agents. At a higher level, the problem statement
would be that if we give the virtual agents a sense of vision instead
of providing it with data in the form of pre-calculated numbers, will
the agent be able to make the same or even better sense out of the
visual feed as it made when it did with symbolic data? Will the agent
completely fail to perform the same tasks it could perform quite eas-
ily when provided with just numbers, or will it perform even better
than its symbolic counterpart finding better and efficient solutions for
the task that it is given or will there be an equilibrium where the de-
pendency on symbolic data and visual data is balanced and the best
solution will be attained.
It is a fair point to say that using visual perception is completely con-
textual and depends on the task to be done, we cannot use visual per-
ception with all agents and for all problems. Yes, completely agreed.
But this project focuses on a niche task identifying flowers in an area,
moving close to the flowers and drinking nectar present in the flow-
ers. It is a task, which, if we ask a human to solve, the human would
rely completely on their visual senses solve. For example, if I am given
a task of collecting nectar from the flowers scattered around an area, I will
not go asking around for the exact location of the flowers, I will prefer to look
around the area myself and locate the flowers that are visible from my current
location and gather nectar from all of them and then look around for more
flowers. The environment design itself is such that this problem can
be solved using visual senses. The flowers that have nectar in them
are red in colour present in a green dominated environment (green
grass, bushes, grey rocks etc.) and once all the nectar from a flower
has been removed, the colour of the flower changes to purple. This
should make it easier for a visual agent to differentiate between a)
the flowers and the environment because according to the traditional
RGB colour model, red and green colours are complementary, and
b) flowers that have nectar and those that are empty because red and
lavender are also quite distant from each other on the traditional RGB
colour model, so locating the red flowers on a green background and
differentiating between the empty purple and red full flowers should
be fairly easy.

On a lower level, the problem is about finding a balance between
the amount of symbolic data that can be provided to a virtual agent
and the amount of information the agent can gather using an active
vision system in a way that is neither heavy on resources like pro-
cessing power nor causes the agent to be highly dependent on infor-
mation that is provided to it. This problem focuses on the approach
suggested in the book Active Vision (book Active Vision) that in the
case of a visual environment, an entity hoping to be intelligent might
benefit more from being able to observe the environment when the
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sensor is located inside the environment rather than observing the
whole environment externally or all at once.



2
L I T E R AT U R E A N A LY S I S

Being a rather important discipline since computers became main-
stream, computer vision to a large extent has been concerned with
passive inversion of the image formation process, to either produce
3D reconstructions of the world or, at a higher level, to identify ob-
jects and their location orientations.
In the sixties, it was discovered that simulating human vision with
computers was a much harder path to attain than imagined. Although
our own vision seems effortless, doing the same for computers is a
massive task. So, although other harder problems seemed to have
been solved or progressing at a much higher pace, computer vision
has made slow progress largely because of the unavailability of hard-
ware that can process graphic heavy processes. However, simplifica-
tion of scenes to a world of blocks with uniformly coloured faces did
show a substantial amount of progress, which paved the way for two
landmark projects :

1. Copy demo at MIT (Shah, 2002), and

2. Robot Shakey at Stanford Research Institute (Nilsson et al., 1984).

2.1 passive vision

Among hardware systems that add visual perception to computers
or virtual agents like cameras, LiDAR sensors, depth sensors or prox-
imity sensors, there exists a perceptual oracle or oracle vision system
that does not require any hardware. In perceptual oracle systems,
agents in a virtual environment access information about the environ-
ment and the agents’ locality by sending queries to the environment
itself and get access to highly processed and privileged information
which is not available to animats otherwise like if an animat is in a
swarm and possesses perceptive oracle system, it can access the num-
ber of animats in a swarm or the absolute location of the animat with
respect to the environment along with its relative position. This can
cause a hive mind like situation where each animat is fed the same
information and the whole herd is led to a unanimous goal rather
than individualistic actions and reflexes.

2.2 active vision

According to (Marr and Vaina, 1982), Vision is knowing what is where
by looking. (Shirai, 1972), (Jarvis, 1983) and (Besl and Jain, 1982) de-

7



8 literature analysis

Figure 1: Representation of the Inverse Augmented Reality (Zhang et al.,
2018)

fine active vision as a vision system that uses sensors that do not
emit of radiation on their own. Rather they depend on sensors that
can only take input from the environment. (Bajcsy, 1988) says that, in
a way, active vision systems can be achieved by only using passive
sensors.

One of the reasons that the Active Vision has become so important
is that it is a matter of technological opportunity as well as of the
traditional approaches to computer vision running aground (Owen,
1993). The mid-eighties involved the use of computing power just in
the experimentation in Computer Vision for analysing the static im-
ages. However, in the last five years, it’s become relatively easier to
analyse images owing to relatively powerful general purpose proces-
sors becoming relatively cheap.

According to (Marr and Vaina, 1982), Vision is knowing what is
where by looking. (Shirai, 1972), (Jarvis, 1983) and (Besl and Jain,
1982) define active vision as a vision system that uses sensors that
do not emit of radiation on their own. Rather they depend on sensors
that can only take input from the environment. (Bajcsy, 1988) says
that, in a way, active vision systems can be achieved by only using
passive sensors.

(Bajcsy, 1988) also defined active perception as a data acquisition
problem in an intelligent way where systems proactively take steps
to gather more information about their environment. The paper ex-
plores both, a top down approach based on a task or a query from
a database and a bottom-up approach where the task is initialised
without any database query and with the aim of exploring the envi-
ronment. In the first step they gather either a geometric skeleton of
the scene or a set of differentiating factors to be searched for followed
by a search operation in the database enabled by a decision making
algorithm which is a primary goal of the active vision systems. In
Figure 2, we can see the field of view of the fish where because of the
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Figure 2: A representation of how active perception looks in effect. (Ter-
zopoulos and Rabie, 1995)

object occlusion, the fish can only see the fish on the left side while
the fish on the right is hidden behind the spherical object. The center
of the perspective is the eye position of the fish and it cannot see be-
hind itself. Also, the fish cannot see the fish right in the front because
the range of its vision does not reach that length.

Active Vision is not concerned with the methods used to observe
the environment but with the strategies that are used for collecting
information about the environment. According to (Spetsakis and Aloi-
monos, 1987), though there is continuous interaction between the two,
in active perception, the observer is the active entity and not the sen-
sor. This also involves analysing available visual sensory data to an-
swer questions generated by the observer. The observer also adjusts
its vantage point, in order to allow the sensor to help uncover a spe-
cific piece of information or problem that demands immediate atten-
tion.
Active observer basically, has an opportunity to plan sensor-actions
in real-time based on cumulatively acquired information incremen-
tally. The main aim is to maximise the information acquired during
each step in order to obtain plausible results consistent with the in-
tent of the goal task. Information theoretic measures of relevant infor-
mation have been used in machine learning (Quinlan, 1986). When
it concerns the sensory planning problems involving simple sensors,
rigorously bayesian measures have been put to use.

The real test of Active Vision Paradigm has been its efficacy in
assisting to build seeing systems. These systems are seen generally
operating at real time rates performing navigation, recognition and
surface analysis. Of course these systems are not as advanced as put
forth by the scientists around 10 to 15 years ago, but being somewhat
cosseted and protected they are effectively able to perform well de-
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fined tasks in insulated environments.
Active Vision viewpoint is expected to evolve and change consider-
ably. It suggests a paradigm shift (Kuhn, 1962) a radical change of
emphasis on what is considered important in vision. Such transitions
require the development and availability of new tools and initially
can pose more problems than they solve. As stated by ((Owen, 1993)),
there are more problems to be solved concerned with designing sim-
ulated elastic mechanisms, algorithms for future search and efficient
control systems. The progress of the active visions systems from per-
forming simple tasks to gradually shifting to more difficult ones has
been very promising.

(Burton, 1993) puts forward, that true knowledge can not exist with-
out perceiving the environment around us independently and the
same applies to Artificial Intelligence. The Molyneux problem (Davis,
1960) is a classic analogy to be given here; assume a visually impaired
person, who has learned to distinguish by touch, different shapes, say,
a cube and a sphere is suddenly provided with an ability to see, will
the person be able to distinguish between the same sphere and the
cube only by seeing both of them placed on a table in front of them
and not touching them. The answer to this problem was given by
(Held, 2011) when their study showed that the newly sighted subjects
(previously blind people who had their vision restored by medical
procedures) were not able to differentiate between different shapes
based only on visual input. In the case of AI, it doesn’t matter how
better AI get at performing tasks, if it gets better only at performing
tasks, we cannot call it truly intelligent. (Burton, 1993) gives a good
example that a chess playing AI does not know that it is playing chess,
for that matter, it does not know what chess is, just like a computer
does not know that it is a computer. You have to program a computer
for it to function properly and you have to train an AI for it to behave
intelligently.
Human intelligence and artificial intelligence differ in the sense that
humans do not receive input from the environment passively, we ac-
tively seek new sensory inputs form the environment and that is how
we learn (Kozma, 2007). Artificial Intelligence on the other hand is
more goal oriented in the sense that if the goals that the AI is defined
to accomplish, are being reached , the AI will not try to learn any-
thing new or will not even explore the environment it is placed in
and that might have something to do with the absence of perceptive
“organs".

Animat fish were used by (Terzopoulos and Rabie, 1995) in an at-
tempt to give them active vision without the use of any specialised
hardware that might aid the fish in gathering information of their en-
vironment. Computer vision algorithms were applied on top of their
virtual retinas. Some fish in the environment employed perception or-
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Figure 3: Binocular vision applied to the DI-Guy (Rabie and Terzopoulos,
2000)

Figure 4: Binocular vision in animat fish. (Rabie and Terzopoulos, 2001)

acle as their vision system where they got the local, geometric, chro-
matic and every other form of information available to the rendering
engine by directly integrating with the environment in a meta way.
They gave binocular vision to the animat fish such that the eyes
were controlled by two “gaze angles,” one for the horizontal rota-
tion and one for the vertical rotation (θ,φ). The system was setup
such that when the eyes are looking forward, the gaze angles are 0◦,
(θ = φ = 0◦). The field of view also plays an important role when
designing vision systems for agents. Figure 4 shows the binocular
perspective of the artificial fish.

A majority of the research on active vision systems has been done
in the early 1990’s with researchers trying to implement active vision
systems on animats (Rabie and Terzopoulos, 2000), (Tamer F. Rabie,
2001), and virtual humans like DI-Guy (Rabie and Terzopoulos, 2000).
They used different techniques for implementing active vision and vi-
sual perception as the sole input to the agents, some of them being
colour histograms or even developing virtual eyes that could move
independently and send feedback to the motor control mechanism so
that the agent can move based on the feedback. Now that simulating
softwares and frameworks like Unity and Unreal etc. are easily avail-
able, this project uses Hummingbird agents in a 3D environment to
simulate the effects that possessing active or passive perception sys-
tems have on the performance of the agents.
The environment consists of an island suspended in 3D space. On the
island, there are different objects: a tree, some rocks spread on the sur-
face, a few bushes and some flowers placed on collections of flower
plants. Each flower contains nectar and the goal of the hummingbird
agent is to feed on as much nectar as it can in an episode. At the
start of the episode, each flower is red in colour and stays so until
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it has any amount of nectar present inside it, however once the hum-
mingbird agent drinks all the nectar from the flower, the colour of the
flower changes to purple. This project uses reinforcement learning to
train the agent that the goal is to feed on nectar, so a reward/penalty
system has been put in place. The reward system is discussed in de-
tail later in this thesis.
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D E S I G N

For this experiment to be a fair comparison and easily executable and
reproducible, we need a way to simulate a 3D environment that can
host multiple virtual agents each having different capabilities for sens-
ing the environment and ability to navigate the environment freely
performing tasks and gathering rewards / penalties. When put like
this, it sounds a little bit complicated, however we can break down
the requirements into smaller parts.

3.1 requirements

3.1.1 3D Environment Simulator

There are multiple softwares available that can simulate and design
3D environments like OpenSimulator (OpenSimulator, 2021), Gazebo
(Gazebo, 2021), VRep (Vrep, 2021), WeBots (WeBots, 2021), Unity3D
(Unity, 2021) and Unreal Engine (Unreal, 2021). Each of these can
be used to simulate 3D environments and can host virtual agents
but each of these has their own strength and use case. We need to
choose one that can be used to train the virtual agents with ease and
in a way that can be upscaled and used with other environments
and with agents that have different tasks to perform. For this project,
we will be using Unity3D for simulating the experiment because of
the ml-agents framework (Unity-Technologies, 2021) available for it
which can train agents using deep learning at a much faster rate than
Unreal’s MindMaker AI. We choose ml-agents over MindMaker also
because the ml-agents framework is fairly straight forward to use and
training can be started only using one command in the terminal.
Unity is an open ended and modular video game engine that is pri-
marily used to make and design video games. Modularity of the
Unity engine means the capability of the software to use external
packages and add more functionality to the games. Since recently
games have been trying to incorporate artificial intelligence in their
non-playing-characters (NPC’s) and also in opponents, packages like
ml-agents have been developed to aid the training and creation of in-
telligent virtual characters for games, and luckily for AI researchers,
this means that they have a large platform to run and simulate exper-
iments for their experiments with Intelligent agents that can be com-
paratively easily deployed in a 3d environment and studied rather
than having to develop a specialised framework that carters to only
one or similar experiments. Unity3D can be downloaded form the of-
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ficial unity website (Unity, 2021).

3.2 the experiment

The experiment is designed such that there are 4 hummingbird agents
situated on a floating island suspended in an infinite 3d space [5].
The island is populated with obstacles like rock clusters, a tree in
the center of the island, clusters of bushes shown in images [6 - 7].
The environment is also populated with 4 hummingbird Agents each
having its own perception system; one that is completely symbolic
and uses 10 symbolic observations fed into it from the environment,
the second one being a completely camera-based perception system
where the neural network of the agent only gets fed the raw RGB
pixels from the camera, the third one is a hybrid system where the
neural network is provided with all of the symbolic data along with
the raw RGB camera feed and in the last one, which is also a hybrid
system, a limited number of symbolic observations along with the
raw RGB camera feed is sent as input into the neural network. This
experiment would be a fair comparison of these perception systems
only if the underlying decision system of all the agents is the same,
that is if they all use the same architecture for the neural network. ??
shows the general architecture and design of this experiment. For the
agents that have used the raw RGB camera feed, we need to use some
convolutional layers for feature extraction but after the convolutional
layers, the neural network architecture of all the four agents is the
same and even for the agents where convolutional layers are used,
the same network has been used for all three of them so that the
comparison of the results is as fair as it can be. All four agents have
been placed in the same environment (on the same island, for this
experiment) and the agent that can get the maximum reward per
episode, has the better perception system among these four because
it is only using their perception system the agents are able to locate
the flowers on the relatively large island and among the obstacles.
Obstacles play an important role in the experiment because of the
reward and penalty system.

In order to test the visual capabilities of an agent, one of the meth-
ods is to give the agent the task of finding an object, a totem located
in the environment, and associate finding the object with getting a re-
ward. For this project, an agent capable of navigating an environment
populated with objects - collectables and non-collectables - would be
the ideal choice. The agent should have a few basic capabilities which
are identified as a) locomotion, the ability to move around in the envi-
ronment, b) the ability to rotate about the three axes in its current po-
sition, c) the ability to perceive the environment in which the agent is
situated. Making a bi-ped agent would have been the first choice but
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then the agent would have to learn how to walk in the environment
and avoid obstacles which is a different problem altogether. We need
an agent capable of moving in a straight line without having to worry
too much about the obstacles or the geography of the environment
and also the problem with bi-ped agents is that they can only rotate
about two axes and not the third one. In order to simulate the gaze
angles for a bi-ped agent, the camera system of the agent will have to
be given a separate gaze controller and again the agent will have to
learn how to control the gaze angle so that it is looking directly at the
objects and not too high up or too low. This experiment also needed
a way to compare the differences between the performance of agents
with symbolic data input and active vision raw pixel input without
having to compromise on any of the other conditions. In essence, the
agents with the symbolic perception system and agent with the active
perception system should be able to co-exist in the same environment
and have the exact same characteristics and “brain” with the excep-
tion being that one agent is fed symbolic data and the other is fed a
raw camera feed. After following along a tutorial for training a virtual
agent in unity with MLagents, I decided to use the tutorial environ-
ment itself as the base of this experiment in which a bird agent that
can fly around in the environment without having to worry about the
altitude of the ground or any obstacles in its path to the flowers. Yes,
there still are some obstacles for the agent like the tree and the bushes
that the agent can run into but it will have to learn to avoid those.

Having confirmed that we will be using unity to simulate the exper-
iment, Detailed tutorials that explain how ml-agents is used to train
virtual agents in a virtual environment are needed. This project uses
the ml-agents tutorial (Limit, 2021) from the unity’s learning page for
the assets and for the basic scene setup. The tutorial link provides the
base scene for this project and all the meshes that have to populate
the floating island on which the experiment takes place. The tutorial
provides a single zip file that contains the .unitypackage file that can
be imported into a new scene and set up. It is also possible to de-
sign a new scene for this project from scratch but that would include
3D modelling the meshes from scratch using a separate software like
Blender3D or Autodesk Maya and would also need textures. That is
too time expensive, so I went with the assets provided with this tuto-
rial.
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Figure 5: Floating Island

Figure 6: Bush Obstacles

Figure 7: Rock Obstacles
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3.2.1 Reward Penalty System

The reward and penalty system of this experiment is such that the
hummingbirds get a major reward only if they satisfy one condition
that is, they are successful in drinking nectar from any of the flow-
ers, but if the hummingbirds collide into obstacles, then the agents
get small penalties, the amount of penalty applied depends on the
offence committed by the agents and also on how far off from the
goal the agents are. If an agent collides with the stem of a flower
plant, it means that it is really close to the flower, it then gets a small
penalty. However, if the agent is completely off course and nowhere
close to completing the task like the agent tries to fly off the edge of
the island or is trying to dig into the floor of the island, the agent
gets a heavy penalty applied to it. All other offences like colliding
with a bush, colliding with a tree have smaller penalties because they
just mean that the agent is trying to fly around and figuring out the
environment and the task, and not just trying to avoid getting penal-
ties by flying around but also not completing the tasks. Figures 8 - 10

show how the floating island looks when ready for the experiment,
the four agents ready to start training and the flowers and obstacles
on the island respectively.

Theoretically, the maximum award that can be received by the
agent is 1500 units because there are 300 flowers placed on one is-
land, and each flower can hold a maximum of 1 unit of nectar. The
rule is that for each time step that the agent’s beak tip is inside the
nectar collider of the flower the agent will receive a reward of 0.1 units
multiplied by the negative dot product of the direction of the beak tip
and the nectar collider, which means that if the beak tip is going into
the flower completely straight, then the reward will be multiplied by
1 hence maximum. The time step is updated 50 times each second.
The reward per time step is calculated by the equation:

reward = 0.1×−(Xbeak, Ybeak,Zbeak) • (Xnectar, Ynectar,Znectar)

Assuming we have a perfect alignment of the beak tip and the nectar
collider of the flowers at all times, the dot product becomes 1 and the
reward will be 0.1.

=⇒ rewardmax = 300× 0.1× 50
=⇒ rewardmax = 1500
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Figure 8: Island scene with agents

Figure 9: Hummingbird Agents on the Island

Figure 10: Flower objects on the Island



3.2 the experiment 19

Agent name Symbolic Obs. No. Sensors Perception System

HummingbirdSymbolic 10 3 Passive

HummingbirdHybrid1 10 1 Hybrid

HummingbirdHybrid2 6 1 Hybrid

HummingbirdActive 0 1 Active

Table 1: Information available to the agents

3.2.2 Agent Design

There are four agents being used in this experiment, each with their
own set of perception system and different amount and forms of in-
formation available to them. I designed these agents in a way that
emphasises an agents access to information about the environment
where the agent at the lowest level has the highest access to sym-
bolic information about the environment and as we go up the list of
agents, the amount of information that an agent can access reduces
gradually until we reach the top most agent that has no access to the
symbolic information about the environment and has to rely solely
on the active vision system available to it. The tables 1 - 4 highlight
the differences between the agents and the perception systems used
by each of the agent.
Although the agents are being treated as separate entities and have
different perception mechanisms, it is important to note that for this
experiment to be a fair comparison of only the perception systems,
the agents have to be completely similar. All the agents used in this
experiment are derived from the same agent design and use the same
mechanics for movement around the environment and the same the
scripts as controllers. The difference in the scripts is only the Collec-
tObservations() method that collects symbolic information from the
environment and sends it into the neural network as input.

Obs No. Obs Symbolic Hybrid 1 Hybrid 2 Active

Local Rotation 4 Yes Yes Yes No

Nearest Flower 3 Yes Yes No No

Distance to Flower 1 Yes Yes No No

BeakTip near Flower 1 Yes Yes Yes No

Pointing to Flower 1 Yes Yes Yes No

Sensor Used RayCast RGB Camera RGB Camera RGB Camera

Table 2: Observations collected by agents
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The observations that has been provided to each of the non-symbolic
agents in not based on speculation but is particularly selected based
on the fact that these observations are local to the agents. That is, the
knowledge that a real hummingbird would have about its environ-
ment, like a real hummingbird would know its own local rotation
(orientation), it would know that if it is pointing towards a flower or
not, it would know whether the tip of its beak is pointing towards
the inside of the flower. A real hummingbird would not know which
flower from among a bunch of flowers is the closest one to its loca-
tion, and does not have access to a vector pointing towards the nearest
flower and it definitely does not know the distance form its own lo-
cation to the flower. These are all symbolic observations that are only
available in passive vision systems just like the perception oracle in
(Terzopoulos and Rabie, 1995) and provided to the agents by the en-
vironment.
Keeping this thing in mind, the information available to the Hybrid2

agent in Table 4 has been made available.
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P R O J E C T M A N A G E M E N T

Figure 11: Initial plan for the project

To manage the project, the project was divided in to 6 sections and
each sections had a few tasks to complete. The sections for the project
are:

• Research: Reading the literature and understanding the basics
of the differences between passive vision and active vision.

• Requirement analysis: Designing the experiment and analysing
the tools currently available to run the experiment.

• Learning Unity: Learning to use and navigate through the unity
interface.

• Setting up the scene: Setting up the scene and following the
ml-agents tutorial

• Experiment set up: Setting up the different agents in the exper-
iment and the different perception systems.

• Running the experiment

Figure 11 shows the initial plan that was to be followed, since I was
going to have to learn how to use unity and the ml-agents library,
I was expecting to run into some errors. I figured out the different
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Figure 12: Changed plan after running into errors

stages where I thought that I will get stuck, and left a few days as
error solving days. In the image, the error buffer days are highlighted
in red. However after going through three phases – Research, Require-
ment Analysis and Learning Unity and ml-agents – I had used 3 days
in error solving and getting the compatible versions of ml-agents C#
and ml-agents python set up properly [Figure 12] and I had then kept
only a few days for any more errors.
In the middle of August, I had to submit some coursework so I had to
stop working for 2 weeks so the plan had to be changed again to ac-
count for the missing two weeks. It was because of these two weeks
that I had to ask for an extension to submit the dissertation thesis.
The final plan of the project is shown in Figure 13.
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Figure 13: Final project plan with 15 days off for coursework





Part II

I M P L E M E N TAT I O N

Based on the detailed concept and design of what the ex-
periment is going to look like, in this part of this disser-
tation thesis, I walk through the implementation of the
experiment in Unity3D using ml-agents and explain how
the agent scripts are programmed, trained and deployed
in detail.
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P R E R E Q U I S I T E S

In this part of the dissertation thesis, I go into details of the imple-
mentation of this project and how true to design the implementation
is. I will start with setting up the Anaconda environment for train-
ing the agents to setting up ml-agents and lead into designing and
implementing the scripts for the individual agents.

5.1 anaconda

Anaconda (Anaconda, 2021) is a free for personal use platform that
is used to streamline data science and machine learning applications
using python and R languages. It comes with the necessary packages
pre-installed and about 7,500 more packages can also be installed if
and when needed. This project uses the anaconda platform to run
TensorFlow python and ml-agents libraries and also to connect to the
unity3D software via port 5004.

The steps to follow to configure anaconda for use with this project
are:

• Download and install anaconda individual edition for your op-
erating system from www.anaconda.com,

• Open the anaconda prompt, (in case of macOS or Linux distri-
bution, it is the native terminal)

• Create a new Conda environment using

Listing 1: Create conda environment

1 conda create <env_name>

• To confirm that the environment has been created, run

Listing 2: List conda environments

conda env list

This command lists all the available environments in anaconda.
Make sure that the environment you created in the previous
step is visible

• Activate the desired environment using the following command:
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Listing 3: Activate conda environment

conda activate <env_name>

• Once the environment is activated, we need to install all the
required packages and libraries from the anaconda prompt or
anaconda navigator, the following libraries need to be installed:

– Tensorflow: using anaconda navigator

1. Open up the navigator window,

2. Select the environment tab from the left pane on the
window,

3. Click on the environment name from the list

4. From the drop-down list at the top, select the “all” op-
tion.

5. Search the name of the package you want to install -
TensorFlow if you do not have a CUDA enabled GPU
or TensorFlow-GPU is you do have a CUDA enabled
GPU.

– Mlagents:

1. Open up an anaconda prompt window,

2. Activate the correct environment,

3. Use the following command:

Listing 4: Install mlagents

python -m pip install mlagents==<version>

5.2 setting up the scene

This project uses the ml-agents tutorial from the unity-learn platform
(Limit, 2021) for the assets and for the basic scene setup. The tutorial
link provides the base scene for this project and all the meshes that
have to populate the floating island on which the experiment takes
place. The tutorial provides a single zip file that contains the .uni-
typackage file that can be imported into a new scene and set up. It
is also possible to design a new scene for this project from scratch
but that would include 3D modeling the meshes from scratch using a
separate software like Blender3D or Autodesk Maya and would also
need texturing. That is too time expensive, so I went with the assets
provided with this tutorial. The steps to set up the scene are:

• Download the .zip file from the tutorial home page and extract
the contents into a folder. The .zip file should contain a .unity-
package file(link to tut)
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• Open Unity Hub on your computer

• Create a new project

• Use the Universal Render Pipeline template and choose a name
for the project.

• Select a folder as the location of the unity project you are creat-
ing

• When the scene has loaded up in Unity, click and drag the pack-
age file extracted earlier into the project panel. We need to do
this before deleting the previous scene because, in unity, you
cannot delete a scene before adding a new one.

• You can now delete the default scene and in the assets folder,
go into Hummingbird → scenes folder and double click on the
floating island scene.

• The base scene with the flower island, flower plants, and one
hummingbird should be ready to work on.

5.3 agent setup

Now, this project, as mentioned earlier will have 4 different types of
hummingbird agents. One with completely symbolic vision, named
hummingbirdAgentSymbolic, two with a mix of symbolic and active
vision systems using an RGB camera names hummingbirdAgentHy-
brid1 and hummingbirdAgentHybrid2, and the only difference be-
tween the two hybrid agents being the number of symbolic observa-
tions each one receives and finally the hummingbirdAgentActive that
does not get any symbolic data given to it and has to navigate the en-
vironment and complete the task using only the single RGB camera
provided to it. In this section we will set up the agent scripts that ma-
terialise the differences between different agents and also make sure
that other than the CollectObservations() method that decides what in-
formation the neural network gets as input, all the other methods
and functions and capabilities of the four hummingbirds is exactly
the same. But before we set up the agent scripts, we need to create
the scripts for the island that defines the location and position ro-
tation of the flowers and the agents and the script for flowers that
controls the behaviour of all the individual flowers in the scene.
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There are 6 scripts being used in this unity project which will are used
to control the behaviours of the agents and how the agents interact
with the environment and also the reward penalty system. Out of
the 6 scripts, 4 scripts are for the four agents described above, one
script is used to control the flowerArea, that is the floating island and
the other one is the script for the flowers on the floating-island that
controls the behaviour of the flowers during each episode.

6.1 flowerarea .cs script :

The FlowerArea.cs script is called at the start of every episode to
set up the island environment and place the objects and agents. It
contains the following methods that are executed in this particular
order:

• Awake(): The awake function is called at the start of each episode
after the start() method and creates an empty arrayList for the
flowerPlants, the flowers and for the dictionary of nectar collid-
ers.

• resetFlowers(): At the start of each episode, this method is called
after the Awake() method to give random rotations to the Flow-
erPlants on the y-axis and some slight rotations on the lateral
axes.

• findChildFlowers(): This method recursively finds and returns
a list of all the child flowers present on a particular instance of
the FlowerArea and adds them to a flowerPlants GameObject
ArrayList. This method also adds the nectar amount in each
flower to a nectar collider dictionary along with the nectar col-
lider to keep track of the amount of nectar in each of the flowers.

6.2 flower .cs script

The Flower.cs script contains the code to control the behaviour of the
flowers once a new episode has started. This script first gets some
vector value about the flowers like a) the vector pointing straight out
of the flower, b) the vector containing the location of the transform of
the flowers and c) a scalar value that is the amount of nectar present
in the flower and a Boolean value that means whether the flower even
has nectar in it or not. The most important method of the Flower.cs
script is the Feed() method.
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• Feed(): This method is called to update the amount of nectar
present in the flower when a hummingbird agent tries to drink
the nectar from a flower. This method also keeps track of the
amount of nectar in the flower and if the nectar amount drops
below zero, the value is clamped.
The control of the mesh collider [Figure 16] of the nectar and the
colour of the flower is also controlled by this method such that
if a flower has no amount of nectar left in it, the Feed() method
disables the mesh collider for that particular flower so that it
cannot be detected by the agents and also changes the colour
of the flower from a bright red to a purple colour in order to
be differentiated from flowers with nectar visually by the active
vision agents.

Figure 14 shows when the flowers are full, they are red in colour
and Figure 15 shows when the flowers are empty, they change
colour to purple.

Figure 14: Flowers when full

Figure 15: Empty flowers
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Figure 16: The Nectar Collider inside flowers

Figure 17: The beak tip of the hummingbird agents

6.3 hummingbird agent scripts

There are 4 scripts, one for each of the four agents. These scripts con-
trol the perception system of the hummingbird agents and also the
reward and penalty system along with the movement of the agents in
the environment. Please note that all four scripts have the same skele-
ton structure, the same reward-penalty system, and even the same
methods. The only difference is in the perception system and what
data from the environment is available to each agent. The common
methods used for all the agents are as follows:

• Initialize(): Built-in function that we are overriding. The ini-
tialise method is called when the game starts and is used for
the initial setup of the agents and provides the agents with the
required child objects from the floatingIsland parent object.

• OnEpisodeBegin(): Built-in function that we are overriding. This
method calls the resetFlowers method in the flowerArea class,
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sets the nectar that the agent has obtained in the previous episode
back to zero, sets the moving and rotation velocity of the agents
to zero, that is if the agents were moving when the last episode
ended, this method stops the movement of the agent.

• OnActionReceived(): This method determines the action to be
taken by the agent when it receives an input form the neural
network or a human player. The agent maps 5 inputs into an
action vector array of length 5. The five indices of the array
represent:

– Index 0: move vector x (+1 means move to the right, -1
means move to the left)

– Index 1: move vector y (1 means move up, -1 means move
down)

– Index 2: move vector z (+1 means move forward, -1 means
move backwards)

– Index 3: pitch angle vector (+1 means rotate pitch upwards,
-1 means rotate pitch downwards)

– Index 4: yaw angle vector (+1 means rotate towards the
right, -1 means rotate towards the left)

• TriggerEnterOrStay(): This method is called when the beakTip
collider of the hummingbird agent collides with a trigger col-
lider, which in this case, the nectar collider of the flower. This
method first finds which flower is this from the nectarCollider-
Dictionary so that it knows how much nectar is present in this
particular flower, and if the flower has nectar and is not empty,
proceeds to drink nectar from this flower using the Feed() method.
The hummingbird agent drinks nectar from the flower at the
rate of 0.1units per time update or 0.2 seconds and updates
the amount of nectar taken by the hummingbird and reduces it
from the available nectar in the flower.
If the agent is in training mode and starts drinking nectar from
a flower, then this method gives a reward of 0.5 units + a bonus
amount to the agent.

• OnCollisionEnter(): In case the agent collides with an object
that is not a trigger, for example the agent collides with the tree
or a bush or a rock object or even the boundary of the training
scene, then the agent receives a penalty of 0.1 units.

The specialised methods made for each of the four hummingbird
agents are different only when it comes to the CollectObservations()
method. Each agent has different set of observations provided to it by
this method discussed below.
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6.3.1 HummingBirdSymbolic.cs - passive perception system

This script is called by the hummingbird agent that takes symbolic
input form the environment along with a rayCasting sensor mounted
on the agent.

CollectObservations(): In the symbolic agent, the CollectObserva-
tions collects 10 observations from the agent and the environment
and send them into the neural network to process and give an out-
put.
The observations collected are a mix of local observations like the
location and rotation and external observations like position and ro-
tation of flowers. The observations collected by the symbolic agent
are:

• The normalized local rotation of the agents’ 3 axes. - 4 observa-
tions.

• A normalized vector pointing to the nearest flower - 3 observa-
tions.

• A normalized vector telling whether the agent’s beak is pointing
towards the flower or not. - 1 observation.

• A normalized vector telling whether the flower is on its front or
at its back. - 1 observation

• And finally a ray casting sensor which acts like a LiDaR sensor
which detects whether there is any object in front of the agent
up to a certain distance.

Since we are using a RayCasting sensor along with the symbolic ob-
servations in this agent, it can be argued that this agent uses a mix of
a symbolic perception system and a passive perception system.

1. RayCast Sensor
The RayCast sensor used with the symbolic agent has 3 layers
of rays originating from the same point and ending at an off-
set of ±45° form the central rays. The maximum angle of the
rays is set as 60° because the field of view of the cameras we
have set up is also 60°. The maximum length of the rays that
the sensor emits is 10 units. This means that the RayCast sensor
can detect objects located up to 10 unit distance from the origin
point. Figure 18 shows a single RayCasting sensor mounted on
a hummingbird. The passive agent, in this experiment is using
3 RayCast sensors. The sensors have the same origin point, but
the end points are set at an offset of −45°, 0° and +45°.
The RayCase sensors can detect if an object is placed in front of
it, if a ray emitted form the sensor hits the object. The sensor
will detect the object only if it is in the range of the sensor —in
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this case, 10 units —and any object beyond the range will not
be detected. It can also detect that an emitted ray has hit a spe-
cific object if we set tag detection to on and specify the number
of objects and the tags associated with those objects that it has
to detect. Figure 19 shows the top view of the RayCast sensor
mounted on the object when the agent is placed in the environ-
ment. When a ray hits an object, the colour of that particular
ray changes to Red, and if he ray misses any object, the colour
remains white.

Figure 18: single RayCast sensor mounted on a hummingbird agent

Figure 19: Top view of the RayCast sensor in the environment.

6.3.2 HummingBirdHybrid1.cs - Hybrid perception system 1

This script is used by the agent that uses a hybrid perception system
that is a hybrid between symbolic perception and active perception.

CollectObservations(): In this agent, this method also collects ob-
servations form the environment, and instead of using just a RayCast
sensor that emits radiation into the environment, this agent has an
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RGB camera mounted on it that acts as it’s eye and since the camera
does not emit any radiation into the environment, but only receives
information in the form of pixels, this perception system can be called
a hybrid between symbolic and active perception.

6.3.3 HummingBirdHybrid2.cs - Hybrid perception system 2

The agent that calls this script again uses a combination of both the
symbolic and active perception systems. This agent does receive some
observations from the environment but those observations are strictly
limited to the agent itself and are observations that I as a human
would have about myself if I were in place of that agent.

CollectObservations(): The CollectObservations() method in this
script collects 6 observations about the agent. These 6 observations
collected have nothing to do with the environment and have been
carefully chosen to be focused on the agent. The following observa-
tions are provided to this agent:

• Normalised local rotation of the agents 3 axes - 4 observations.

• A normalised vector telling whether the agent’s beak is pointing
towards the flower or not. - 1 observation.

• A normalised vector telling whether the flower is on its front or
at its back. - 1 observation.

• And an RGB camera sensor placed on the hummingbird agent.

This agent also uses an RGB camera in the place of a RayCast sensor
that acts as a passive sensor required for active sensing.

6.3.4 HummingBirdActive.cs - Active perception system

This script is called by the agent that uses the RGB camera mounted
on the agent as the only source of observations. The hummingBirdA-
gentActive agent in this environment is the only agent with a com-
pletely active perception since the only way for it to gather any infor-
mation about the environment is through the raw pixels it receives
from the camera.
The script used by this agent does not have any CollectObservations()
method in it.

6.4 camera sensor

For implementing the active vision part of this project, I have used
the inbuilt Unity camera-sensor that is mounted onto the agents as
a child sensor of the hummingbird agent prefab. The camera sensor
was set up using the following steps:
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• Open the prefab of the agent you want to add the camera to,

• Right-click on the left panel and add a new camera

• Change the camera name from the inspector window for the ap-
propriate agent, I used the names cameraSensorHybrid1, cam-
eraSensorHybrid2, and cameraSensorActive for each of the three
agents.

• Now, we need to create a new component by clicking on the
“add component” button in the inspector window and add a
new camera sensor component for each of the agents.

• Drag the camera object from the left pane into the camera field
of the cameraSensor component.

The resolution that I have chosen for the cameras in this project is
300x150 pixels. I have chosen a 2 : 1 aspect ratio because it provides
a wider field of view to the agents hence covering a larger area of the
island. I could have chosen a less wide aspect ratio and increased the
field of view in the camera settings, but if we set a larger field of view
for the camera, then the image gets distorted Figure 20 also known
as perspective distortion. For this reason, a wider aspect ratio is used
and the field of view for the cameras is set to 60° We also have to
keep in mind the resolution of the cameras because larger images of
a complex environment contain more detail, hence a larger network
is required to extract information form them. Now since larger net-
works take a larger time to train, we have to choose the resolution
in a way that does not affect the performance of the agents as much
while still having enough information to be able to complete the tasks
easily.

A camera equipped with a cameraSensor component is mounted
on all the agents at the same relative location to maintain the unifor-
mity across all the agents. Figure 21 to 24 show the mounting of the
camera and the view seen by the hummingbird agents when in the
environment respectively. Figure 25 shows the range up to which the
agents can see. The clipping planes for the cameras range from 0.01
to 20 that means that objects between the distance of 0.01 units and
20 units can be seen by the agent.

In order to save time and processing power required, the data fed
into the camera sensor was further simplified by using culling masks.
The nectar colliders fo the flowers are rendered onto a separate layer
along with the beak tip of the agent over a solid background. The
camera settings are changed to feed the neural network with only
the images rendered on this layer. so although the perspective of the
agent is shown in Figure 24, the rendered image that is fed into the
neural network is shown in Figure 26. This method of simplifying the
output image will help in reducing the training time of the agents by
a very large margin.
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Figure 20: The distorted view seen in the camera at wider field of views

Figure 21: The mounting of the camera sensor on the agents

Figure 22: The mounting of the camera sensor on the agents - side view
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Figure 23: View from the camera

Figure 24: The actual 300x150 view of the environment as seen by the agents

Figure 25: Clipping distance for the cameras
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Figure 26: Culled image for the neural network





7
T R A I N I N G

7.1 training using ml-agents

Training these agents takes place using the ml-agents framework. We
already have set up ml-agents in unity as well as in the conda environ-
ment and are ready to start training the agents. To train each agent,
we need to use a .yaml file that contains the hyperparameters for the
neural network and the environment parameters. .yaml is a data se-
rialisation format that can easily be read by humans. This format is
used to store information about the parameters inputs required by a
certain program and is independent of the programming language
used. The parameters and hyperparameters set in the trainer config-
uration file for this project contain the information required by the
neural network to perform the reinforcement learning process like
the number of hidden units, the number of epochs to run when train-
ing, the number of hidden units in each hidden layer, the strength of
the reward signal and also the discount factor. For this experiment to
be a fair comparison, I had intended that all agents use the same ar-
chitecture of the neural network and the only difference between the
symbolic agent and the non-symbolic agents is that the non-symbolic
agents use a convolutional network in front of their own neural net-
work, but because the inputs and the dimensions of the data being
input into the neural network are completely different between agent,
it was extremely hard to find a set of hyperparameters that were op-
timised for all the four agents simultaneously. In the initial tests, I
found that if one agent was performing better, the others were not
performing at all until the very end of 10 million steps. I then de-
cided to run the experiment with different network architectures for
each agent. I selected sets of hyperparameters for each agent which I
knew are tuned for that particular agent and ran the experiment.
Table 3 contains a list of the hyperparameters used by the each agent.

Agent name No. layers Hidden units η Batch size epochs

HummingbirdSymbolic 5 256 0.0002 1024 3

HummingbirdHybrid1 5 256 0.0002 500 3

HummingbirdHybrid2 3 512 0.0003 2048 3

HummingbirdActive 1 2048 0.0003 10 3

Table 3: Hyperparameters for each agent
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An example of the contents of the training configuration is:

Listing 5: .yaml file contents

behaviors:

AgentName:

trainer_type: ppo

4 hyperparameters:

batch_size: 2048

buffer_size: 10000

learning_rate: 0.0001

learning_rate_schedule: linear

9 network_settings:

normalize: false

hidden_units: 64

num_layers: 1

vis_encode_type: resnet

14 reward_signals:

extrinsic:

gamma: 0.99

strength: 1.0

keep_checkpoints: 5

19 checkpoint_interval: 500000

max_steps: 5000000

time_horizon: 128

summary_freq: 20000

threaded: true

Figure 27 shows the camera views of all four agents training simul-
taneously in the same environment.

Figure 27: All agents training simultaneously

Use the following steps to start the training:

• Open an anaconda prompt window,

• Activate the environment that you want to use to train the hum-
mingbirds,
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Figure 28: The active agent in training

Figure 29: The passive agent in training

• Navigate in the anaconda prompt to the folder you want to
save the results in. Ideally the same folder with the training
configuration file.

• Call the ml-agents python to train the agents using TensorFlow
using the command:

Listing 6: Training Command ml-agents

mlagents-learn <training configuration file> --run-id <name

of run>

Figure 28 and Figure 29 show the camera views of the agents when
in training and Figure 30 shows the view form the agent camera when
the agent is training.

The results of the training are written by ml-agents in a folder
named results that is located in the same folder as your training
configuration file. This folder contains sub-folders with names of all
the training runs and each such folder has a separate folder for ev-
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Figure 30: Agent’s perspective when training

ery agent in that run. We can view the results of the training using
TensorBoard.

7.2 tensorboard

According to the configuration set up in the trainer configuration file,
the ml-agents will print out a summary of the training results so far
after every 20000 steps until it reaches 5 million steps of training for
each agent. The summary is also added to a .csv file along with the
neural network in .nn file format that can be imported into unity as a
trained brain to be used by the agents.
We can see the training in action using TensorBoard. TensorBoard is
a toolkit for TensorFlow used in visualisation of the experiments in
real-time. TensorBoard can be used to visualise the results using the
following steps:

• Open an anaconda prompt window,

• Navigate to the folder with the results folder,

• Run the command:

Listing 7: Run tensorboard

tensorboard --logdir results

• Open a browser window,

• Go to the url https : //localhost :< portnumber > you can see
the port used by TensorBoard in the anaconda prompt window.



Part III

E VA L U AT I O N A N D R E S U LT S

This part of the dissertation thesis discusses the results
of this experiment. I first put forward a test hypothesis
based on what I think could be the possible result of the
experiment and after that I will discuss the actual results
of the experiment followed by an evaluation of the results
obtained and where do we go from here.
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H Y P O T H E S I S

The results of the preliminary experiments suggest that although all
the agents can perform well and learn how to drink nectar from the
flowers given each agent has a different network architecture and hy-
perparameters, all four agents take different number of iterations to
learn the winning criteria. I also learned that different agents need
different amounts of rewards for learning at a better or a worse rate.
One thing that remained fairly consistent was that the agent with hy-
brid1 perception system, that is, the agent that received all 10 obser-
vations form the environment along with the camera input learned to
locate the flowers and drink nectar form them the earliest while the
agent with the active perception system that only received the cam-
era feed as input took the longest time to learn to drink nectar from
the flowers and that too after tweaking the reward system and letting
the agent have a slightly more reward when it drinks nectar from a
flower, giving it more incentive to learn quickly. The agents with the
active vision system and hybrid 2 perception system were in a quite
close competition with each other, but the symbolic agent did beat the
hybrid 2 agent in the time it took to learn to drink nectar form the
flowers. Based on these experiments, I have developed a hypothesis
stated in the next section.

8.1 hypothesis 0

The hypothesis that I propose for this experiment is that under com-
pletely identical situation for all the agents, and after selecting net-
work settings with which all the agents have a chance of learning
how to complete the task and get consistent substantial rewards in
a reasonable time, the decreasing order in which the agents perform
best will be:

1. Hybrid 1 perception system 10 symbolic observations along with
an RGB input from the camera fed into the neural network

2. Passive perception system 10 symbolic observations along with
input from the RayCast sensor

3. Hybrid 2 perception system 6 symbolic observations collected from
the environment along with the RGB camera feed as input to the neu-
ral network

4. Active perception system No symbolic information available to the
agent and only the camera output fed as input to the network.
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T H E R E S U LT S

After completing the training run on all the four experiments sepa-
rately, Figure 31 shows the rewards received by each agent and Fig-
ure 32 shows the rewards along with the average reward received by
each agent. The individual rewards received by each agent are shown
in images 34 through 37. According to these results, the order of the
agents who got the maximum amount of rewards to the lowest is:

1. Passive perception system

2. Hybrid 1 Perception system

3. Active perception system

4. Hybrid 2 perception system

These first two items in the list conform to the hypothesis put for-
ward initially, however the last two items do not satisfy the hypothesis
so we can say that the hypothesis was partially correct. Entropy of an
agents’ training run means the lack of predictability of an agents ac-
tions, in other words, randomness. Therefore to establish that these
agents have actually learnt at-least some pattern of actions to com-
plete the task, we will also be looking at the entropy for all the agents.
In Figure 33, we can see that the entropy for all the agents is decreas-
ing and is suggesting that the randomness of the agent actions is
decreasing and each agent is falling into a pattern of its own.

Colour Perception system Marker

Red Passive –

Green Hybrid 1 –

Orange Hybrid 2 –

Blue Active –

Table 4: Legend for Figure 31
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Figure 31: Cumulative reward of all four agents
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Figure 34: Rewards for passive perception system

Figure 32: Average reward of all four agents
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Figure 33: Entropy for all agents

In Figure 33, we can see that the entropy for all the agents is de-
creasing and is suggesting that the randomness of the agent actions
is decreasing and each agent is falling into a pattern of its own.

9.1 analysis on the results

Now that we have established the results of this experiment, I anal-
ysed the result data and pass the data through some data pipelines
to see if there are any hidden patterns in the result file. To develop a
data pipeline for the result file, we first have to look at the data and
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Figure 35: Rewards for Hybrid 1 perceptionsystem
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Figure 36: Rewards for Hybrid2 perception system

understand what it contains. The results are exported by ml-agents
in a .csv file and can be read by Tensorboard to create the result visu-
alisations.

9.2 summary

Figure 38 shows the average rewards gained by each agent. The max-
imum rewards were received by the Agent with passive perception
system with the average being over 250 units. there was a significant
difference in the rewards received by the other agents. The second
highest amount of rewards was received by the hybrid 1 perception
system at 120 units closely followed by the Active perception system
at 100 units. The least amount of rewards were received by the agent
with the hybrid 2 perception system at 50 units.
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Figure 37: Rewards for Active Perception system
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Figure 38: Average rewards for each agent

Figure 39: Cumulative rewards for agents
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Although the Hybrid 1 perception system was the second best per-
forming perception system, in Figure 40 and Figure 33 we can see
that the Hybrid 1 system has the lowest median entropy among all
the four systems and also has takes the lowest number of steps to
reach the point where it receives constant positive rewards.

Figure 40: Entropy for each agent.
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C O N C L U S I O N

After looking at the results and analysis, it can be concluded that
given each agent is provided with a separate set of hyperparameters
tuned to the agents and their specific input to the network, there are
two candidates for the best performing agent depending on the crite-
ria that we are judging on.

If we are going to judge these agents with the only criteria being
the amount of rewards received by the agents, then the clear winner is
the passive perception system which leads the other agents by more
than twice the amount of average rewards received but we can also
not ignore the fact that the passive perception system has the high-
est entripy value and therefore it is most difficult to predict what the
agents’ next action will be.

However, if we also take into consideration the number of steps an
agent takes to receive a constant positive reward and how quickly the
agent learns to perform the task correctly along with the maximum,
then the clear winner is the Hybrid 1 perception system because in
this experiment while the passive perception system took about 2

million steps to reach constant positive rewards, the Hybrid one per-
ception system was the earliest to learn the task properly with only
200,000 steps taken to start getting a constant positive reward. The
hybird 1 perception was followed closely by the hybrid 3 perception
system, but the average reward received by the hybrid 2 agent is the
lowest so it is losing.

This experiment is still left open ended because the architecture of
the neural network for each agent is different, so it could not be de-
termined which perception system performs the best if all the agent
have the exact same conditions and network architecture. What this
experiment proves is that if we are allowed to fine tune the neural
network according to each agent, although a passive perception sys-
tem gets the most reward, it takes a long time to learn to complete
the task. The hybrid 1 perception system on the other hand, where
the agent has access to all the information available from the environ-
ment, if the agent is also provided with active perception capabilities,
it can learn to perform the task fairly quickly and with a relatively
higher average reward.
I think this is because in the passive perception case, although the
symbolic information available to the agent does point to the nearest
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flower and also tells the distance to the flower, the agent still has to
navigate correctly to the flower and find the nectar collider and the
entrance. However in the case of the hybrid perception system, once
the agent has the information about the nearest flower provided to it,
the task at hand for the agent changes from drinking nectar to max-
imising the red colour on the camera sensor (maximising the colour
of the flower means that the flower is nearby). The agent then has to
only choose any white coloured on the screen and move in such a
way that the camera sensor has maximum white pixels rather than
black.
What it means for agents deployed in a 3d environment along with
non-deterministic actors like humans or other agents is that if there
is perfect knowledge of the environment available to the agents along
with perfect knowledge of the presence of other agents also present
in the environment, a passive perception system, although will take
a larger number of steps to perform the task at hand, passive percep-
tion will be the best performer when it comes to the average reward
received as a metric. However, if we are low on time, then an agent
with a perception that is a hybrid between active and passive percep-
tion will be the best performer because it takes the lowest number
of steps to reach a state of constant positive rewards and the aver-
age rewards received is also the second best trailing only the passive
perception system.
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S O U R C E C O D E

This section contains the source code for the different scripts used by
the FlowerArea, The individual flowers and by each of the humming
birds.

a.1 flower area script

a.1.1 The Reset Flowers method

Listing 8: resetFlowers() method

public void resetFlowers()

{

4 //rotate each flower plant randomly around Y axis and

slightly along the lateral axes

foreach (GameObject flowerPlant in flowerPlants)

{

//set random rotation

float xRotation = UnityEngine.Random.Range(-5f, 5f);

9 float yRotation = UnityEngine.Random.Range(-180f, 180

f);

float zRotation = UnityEngine.Random.Range(-5f, 5f);

flowerPlant.transform.localRotation = Quaternion.

Euler(xRotation, yRotation, zRotation);

}

14 //reset each flower

foreach (Flower flower in Flowers)

{

flower.resetFlower();

}

19 }

a.1.2 Finding child flowers on the island

Listing 9: findChildFlowers() method

1

private void findChildFlowers(Transform parent)

{

for (int i = 0; i < parent.childCount; i++)

{

61



62 source code

6 Transform child = parent.GetChild(i);

if (child.CompareTag("flower_plant"))
{

// found a flower plant; add it to flowerPlants

list

11 flowerPlants.Add(child.gameObject);

//look for flowers in flower plants

findChildFlowers(child);

}

16 else

//not a flower plant, look for flower component

{

Flower flower = child.GetComponent<Flower>();

if (flower != null)

21 {

//found flower; add it to flowers list

Flowers.Add(flower);

//add nectar collider to lookup dictionary

26 nectarFlowerDictionary.Add(flower.

nectarCollider, flower);

//note: there are no flowers that are

children of other flowers.

}

else

31 {

//Flower component not found

findChildFlowers(child);

}

}

36 }

}

a.2 script for each flower

This section contains the code for the Feed() method for each of the
flowers.

Listing 10: Feed() method

public float Feed(float amount)

{

4 //track how much is available. (cannot taker more than

available

float nectarTaken = Mathf.Clamp(amount, 0f, nectarAmount)

;

//subtract the nectar
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nectarAmount -= amount;

9

if (nectarAmount <= 0)

{

//no nectrar remaining

nectarAmount = 0;

14

//disable flower and nectar collider

flowerCollider.gameObject.SetActive(false);

nectarCollider.gameObject.SetActive(false);

19 //change flower colour

flowerMaterial.SetColor("_BaseColor",
emptyFlowerColor);

}

//return amount of nectar taken

return nectarTaken;

24 }

}

a.3 the hummingbird agent scripts

As stated earlier in the thesis, the 4 agents have the same code in
their scripts except the CollectObservations() method. The common
methods in all the scripts are:

a.3.1 Common methods:

1. OnEpisodeBegin():

Listing 11: OnEpisodeBegin() method

1 public override void OnEpisodeBegin()

{

if (trainingMode)

{

//only reset flowers in training when there is

one agent per area

6 flowerArea.resetFlowers();

}

//reset the amoount of nectar obtained

nectarObtained = 0f;

11

//zero out velocities so that there is no movement

when a new episode begins

rigidbody.velocity = Vector3.zero;

rigidbody.angularVelocity = Vector3.zero;

16 //default to spawning in fornt of a flower
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bool inFrontOfFlower = true;

if (trainingMode)

{

21 //spawn in front of flower 50% of the time.

inFrontOfFlower = UnityEngine.Random.value > .5f

;

}

//move agent to random safe position

26 MoveToSafeRandomPosition(inFrontOfFlower);

//recalculate nearest flower since agent has moved

UpdateNearestFlower();

}

31 }

2. OnActionReceived():

Listing 12: OnActionReceived() method

public override void OnActionReceived(float[] vectorAction)

{

//Don’t take any action

if (frozen) return;

5

//calculate movement vector

Vector3 move = new Vector3(vectorAction[0],

vectorAction[1], vectorAction[2]);

//add force in the direction of the move vector

10 rigidbody.AddForce(move * moveForce);

//get the current rotation

Vector3 rotationVector = transform.rotation.

eulerAngles;

15 //calculate pitch and yaw rotation

float pitchChange = vectorAction[3];

float yawChange = vectorAction[4];

//calculate smooth rotation changes

20 smoothPitchChange = Mathf.MoveTowards(

smoothPitchChange, pitchChange, 2f * Time.

fixedDeltaTime);

smoothYawChange = Mathf.MoveTowards(smoothYawChange,

yawChange, 2f * Time.fixedDeltaTime);

//calculate new pitch and yaw

//clamp pitching to avoid flipping upside down

25 float pitch = rotationVector.x + smoothPitchChange *
Time.fixedDeltaTime * pitchSpeed;
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if (pitch > 180f) pitch -= 360f;

pitch = Mathf.Clamp(pitch, MinPitchAngle,

MaxPitchAngle);

//yaw

30 float yaw = rotationVector.y + smoothYawChange *
Time.fixedDeltaTime * yawSpeed;

//apply the new rotation

transform.rotation = Quaternion.Euler(pitch, yaw, 0f

);

}

35 }

3. MoveToSafeRandomPosition():

Listing 13: MoveToSafeRandomPosition

1 private void MoveToSafeRandomPosition(bool inFrontOfFlower)

{

bool safePositionFound = false;

int attemptsRemainng = 100; //prevent infinite loop

Vector3 potentialPosition = Vector3.zero;

6 Quaternion potentialRotation = new Quaternion();

//loop until safe position found or we run oput of

attempts

while (!safePositionFound && attemptsRemainng > 0)

{

11 attemptsRemainng--;

if (inFrontOfFlower)

{

//pick a random flower

Flower randomFlower = flowerArea.Flowers[

UnityEngine.Random.Range(0, flowerArea.

Flowers.Count)];

16

//position 10-20 cm i from=nt of it.

float distanceFromFlower = UnityEngine.

Random.Range(.1f, .2f);

potentialPosition = randomFlower.transform.

position + randomFlower.flowerUpVector *
distanceFromFlower;

21 //point beak at flower; bird’s head is

center of transform

Vector3 toFlower = randomFlower.

flowerCentrePosition - potentialPosition

;

potentialRotation = Quaternion.LookRotation(

toFlower, Vector3.up);

}
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26 else

{

//pick random height from the ground

float height = UnityEngine.Random.Range(1.2f

, 2.5f);

31 //pick a random radius from center of the

area.

float radius = UnityEngine.Random.Range(2f,

7f);

//pick a random direction roatating from y

axiz

Quaternion direction = Quaternion.Euler(0f,

UnityEngine.Random.Range(-180f, 180f), 0

f);

36

//combine height, rotation and radius to

pick a potential position

potentialPosition = flowerArea.transform.

position + Vector3.up * height +

direction * Vector3.forward * radius;

//choole random starting pitch and yaw

41 float pitch = UnityEngine.Random.Range(-60f,

60f);

float yaw = UnityEngine.Random.Range(-180f,

180f);

potentialRotation = Quaternion.Euler(pitch,

yaw, 0f);

}

46 //check to see if agent will collide with

anything

Collider[] colliders = Physics.OverlapSphere(

potentialPosition, 0.05f);

//safe position found if no colliders overlap

safePositionFound = colliders.Length == 0;

51 }

Debug.Assert(safePositionFound, "A safe position was
not found to spawn");

//set the position and rotation

transform.position = potentialPosition;

56 transform.rotation = potentialRotation;

}

}

4. TriggerEnterOrStay() method:

Listing 14: TriggerEnterOrStay() method
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1 private void TriggerEnterOrStay(Collider collider)

{

//check if agent is colliding with nectar

if (collider.CompareTag("nectar"))
{

6 Vector3 closestPointToBeakTip = collider.

ClosestPoint(beakTip.position);

//check if the closest colision point is close

to the beaktip or not

//note: a collision with anything but the beak

tip should not count

if(Vector3.Distance(beakTip.position,

closestPointToBeakTip) < BeakTipRadius)

11 {

//look up flower for this nectar collider

Flower flower = flowerArea.

getFlowerFromNectar(collider);

//attempt to take 0.1 nectar

16 //this is per fixed time step. i. it happens

every .02 seconds or 50x per second

float nectarReceived = flower.Feed(0.1f);

//keep track of nectar obtained

nectarObtained += nectarReceived;

21

if (trainingMode)

{

//calculate reward for getting nectar

float bonus = .02f * Mathf.Clamp01(

Vector3.Dot(transform.forward.

normalized, -nearestFlower.

flowerUpVector.normalized));

26 AddReward(0.01f + bonus);

}

//if flower is empty update nearest flower

if (!flower.hasNectar)

31 {

UpdateNearestFlower();

}

}

}

36 }

a.3.2 CollectObservations() methods for each hummingbird

1. HymmingbirdAgentSymbolic.cs and HummingbirdAgentHybrid1.cs
-Passive and Hybrid1 perception system Since the symbolic agent
and the hybrid 1 agent share the same set of collected observa-
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tions, the CollectObservations() method is common for both of
them:

Listing 15: Symbolic and hybrid 1 agents collected observations

private void TriggerEnterOrStay(Collider collider)

{

//check if agent is colliding with nectar

4 if (collider.CompareTag("nectar"))
{

Vector3 closestPointToBeakTip = collider.

ClosestPoint(beakTip.position);

//check if the closest colision point is close

to the beaktip or not

9 //note: a collision with anything but the beak

tip should not count

if(Vector3.Distance(beakTip.position,

closestPointToBeakTip) < BeakTipRadius)

{

//look up flower for this nectar collider

Flower flower = flowerArea.

getFlowerFromNectar(collider);

14

//attempt to take 0.1 nectar

//this is per fixed time step. i. it happens

every .02 seconds or 50x per second

float nectarReceived = flower.Feed(0.1f);

19 //keep track of nectar obtained

nectarObtained += nectarReceived;

if (trainingMode)

{

24 //calculate reward for getting nectar

float bonus = .02f * Mathf.Clamp01(

Vector3.Dot(transform.forward.

normalized, -nearestFlower.

flowerUpVector.normalized));

AddReward(0.01f + bonus);

}

29 //if flower is empty update nearest flower

if (!flower.hasNectar)

{

UpdateNearestFlower();

}

34 }

}

}

2. HummingbirdAgentHybrid2.cs - Hybrid 2 perception system
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Listing 16: Hybrid 2 agents collected observations

public override void CollectObservations(VectorSensor sensor

)

{

// if nearest flower is null before

CollectObservations is called.

4 if(nearestFlower == null)

{

sensor.AddObservation(new float[10]);

return;

}

9

//observe agent’s local rotation (4 observations)

sensor.AddObservation(transform.localRotation.

normalized);

//observe a fot prooduct that indicated whether a

beaktip is in front of flower (1 observation)

14 // +1 means beakTip is directly in front of flower,

-1 means it is directrly behind

sensor.AddObservation(Vector3.Dot(toFlower.

normalized, -nearestFlower.flowerUpVector.

normalized));

//observe as dot product whether a beak is pointing

toeards flower (1 observation)

// +1 means beak is pointing directly at flower, -1

means directly away

19 sensor.AddObservation(Vector3.Dot(beakTip.forward.

normalized, -nearestFlower.flowerUpVector.

normalized));

//total 6 observations

}





B I B L I O G R A P H Y

D. Terzopoulos and T. F. Rabie, “Animat vision: Active vision in ar-
tificial animals,” in Proceedings of IEEE International Conference on
Computer Vision. IEEE, 1995, pp. 801–808.

T. F. Rabie and D. Terzopoulos, “Active perception in virtual humans,”
in Vision Interface, vol. 2000, 2000.

——, “Modelling active vision systems for dynamic simulated en-
vironments,” in IASTED International Symposium on Modelling and
Simulation (MS’2001), 2001, pp. 34–41.

Z. Zhang, D. Weng, H. Jiang, Y. Liu, and Y. Wang, “Inverse aug-
mented reality: A virtual agent’s perspective,” in 2018 IEEE Interna-
tional Symposium on Mixed and Augmented Reality Adjunct (ISMAR-
Adjunct). IEEE, 2018, pp. 154–157.

J. D. N. Dionisio, W. G. B. III, and R. Gilbert, “3d virtual worlds and
the metaverse: Current status and future possibilities,” ACM Com-
puting Surveys (CSUR), vol. 45, no. 3, pp. 1–38, 2013.

GlobalData. (2021) Ar to see 22-fold revenue growth by 2030

while ar-based devices set to one day replace the smartphone,
says globaldata. [Online]. Available: https://www.globaldata.com/
ar-see-22-fold-revenue-growth-2030-ar-based-devices-set-one-day-replace-smartphone-says-globaldata/

M. Billinghurst and H. Kato, “Collaborative mixed reality,” in Pro-
ceedings of the First International Symposium on Mixed Reality, 1999,
pp. 261–284.

E. Weitnauer, N. M. Thomas, F. Rabe, and S. Kopp, “Intelligent agents
living in social virtual environments–bringing max into second
life,” in International Workshop on Intelligent Virtual Agents. Springer,
2008, pp. 552–553.

D. Voyager. (2021) Second life stats. [Online]. Available: https:
//danielvoyager.wordpress.com/sl-stats/

M. Shah, “Guest introduction: the changing shape of computer vision
in the twenty-first century,” 2002.

N. J. Nilsson et al., “Shakey the robot,” 1984.

T. Owen, “Active vision edited by andrew blake and alan yuille the
mit presslondon, 1992, 368 pages incl. index (£ 44· 95),” Robotica,
vol. 11, no. 5, pp. 487–487, 1993.

71

https://www.globaldata.com/ar-see-22-fold-revenue-growth-2030-ar-based-devices-set-one-day-replace-smartphone-says-globaldata/
https://www.globaldata.com/ar-see-22-fold-revenue-growth-2030-ar-based-devices-set-one-day-replace-smartphone-says-globaldata/
https://danielvoyager.wordpress.com/sl-stats/
https://danielvoyager.wordpress.com/sl-stats/


72 Bibliography

D. Marr and L. Vaina, “Representation and recognition of the move-
ments of shapes,” Proceedings of the Royal Society of London. Series B.
Biological Sciences, vol. 214, no. 1197, pp. 501–524, 1982.

Y. Shirai, “Recognition of polyhedrons with a range finder,” Pattern
Recognition, vol. 4, no. 3, pp. 243–250, 1972.

R. A. Jarvis, “A perspective on range finding techniques for computer
vision,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, no. 2, pp. 122–139, 1983.

P. Besl and R. Jain, “Computing surveys, 17 (1985), 135-145.[2] i. gar-
gantini,” Computer Graphics Image Processing, vol. 20, pp. 365–374,
1982.

R. Bajcsy, “Active perception,” Proceedings of the IEEE, vol. 76, no. 8,
pp. 966–1005, 1988.

M. E. Spetsakis and Y. Aloimonos, “Closed form solution to the struc-
ture from motion problem from line correspondences.” in AAAI,
1987, pp. 738–743.

J. R. Quinlan, “The effect of noise on concept learning,” Machine learn-
ing: An artificial intelligence approach, vol. 2, pp. 149–166, 1986.

T. Kuhn, “The structure of scientific revolution (: 1970),” Kuhn2The
Structure of Scientific Revolution1970, 1962.

R. G. Burton, Natural and Artificial Minds, 1st ed. SUNY Press, 1993.

J. W. Davis, “The molyneux problem,” Journal of the History of
Ideas, vol. 21, no. 3, pp. 392–408, 1960. [Online]. Available:
http://www.jstor.org/stable/2708144

R. Held, “The newly sighted fail to match seen with felt,” 2011.

R. Kozma, “Computational aspects of cognition and consciousness in
intelligent devices,” IEEE Computational Intelligence Magazine, vol. 2,
no. 3, pp. 53–64, 2007.

D. T. Tamer F. Rabie, “Modelling active vision systems for dynamic
simulated environments,” 2001.

OpenSimulator. (2021) Opensimulator. [Online]. Available: https:
//www.opensimulator.org/

Gazebo. (2021) Gazebo. [Online]. Available: https://gazebosim.org/

Vrep. (2021) Vrep. [Online]. Available: https://www.coppeliarobotics.
com/

WeBots. (2021) Webots. [Online]. Available: https://cyberbotics.com/

http://www.jstor.org/stable/2708144
https://www.opensimulator.org/
https://www.opensimulator.org/
https://gazebosim.org/
https://www.coppeliarobotics.com/
https://www.coppeliarobotics.com/
https://cyberbotics.com/


Bibliography 73

Unity. (2021) Unity. [Online]. Available: https://unity.com

Unreal. (2021) Unreal. [Online]. Available: https://unity.com

Unity-Technologies. (2021) ml-agents. [Online]. Available: https:
//github.com/Unity-Technologies/ml-agents

I. Limit. (2021) Ml-agents: Hummingbirds. [Online]. Available:
https://learn.unity.com/course/ml-agents-hummingbirds

Anaconda. (2021) Anaconda. [Online]. Available: https://www.
anaconda.com/

https://unity.com
https://unity.com
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://learn.unity.com/course/ml-agents-hummingbirds
https://www.anaconda.com/
https://www.anaconda.com/

	Abstract
	Declaration
	Contents
	List of Figures
	List of Tables
	Listings

	Formation of the Idea
	1 Introduction
	1.1 Inception
	1.2 Introduction
	1.3 Problem Statement

	2 Literature Analysis
	2.1 Passive Vision
	2.2 Active Vision

	3 Design
	3.1 Requirements
	3.1.1 3D Environment Simulator

	3.2 The experiment
	3.2.1 Reward Penalty System
	3.2.2 Agent Design


	4 Project management

	Implementation
	5 Prerequisites
	5.1 Anaconda
	5.2 Setting up the scene
	5.3 Agent Setup

	6 The environment and methods
	6.1 FlowerArea.cs script:
	6.2 Flower.cs script
	6.3 Hummingbird Agent scripts
	6.3.1 HummingBirdSymbolic.cs - passive perception system
	6.3.2 HummingBirdHybrid1.cs - Hybrid perception system 1
	6.3.3 HummingBirdHybrid2.cs - Hybrid perception system 2
	6.3.4 HummingBirdActive.cs - Active perception system

	6.4 Camera Sensor

	7 Training
	7.1 Training using ml-agents
	7.2 TensorBoard


	Evaluation and Results
	8 Hypothesis
	8.1 Hypothesis 0

	9 The results
	9.1 Analysis on the results
	9.2 Summary

	10 Conclusion

	Appendix
	A Source code
	A.1 Flower Area Script
	A.1.1 The Reset Flowers method
	A.1.2 Finding child flowers on the island

	A.2 Script for each flower
	A.3 The Hummingbird agent scripts
	A.3.1 Common methods:
	A.3.2 CollectObservations() methods for each hummingbird




